On the geodetic number and related metric sets in Cartesian product graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the geodetic number and related metric sets in Cartesian product graphs

A set S of vertices of a graph G is a geodetic set if every vertex of G lies in at least one interval between the vertices of S. The size of a minimum geodetic set in G is the geodetic number of G. Upper bounds for the geodetic number of Cartesian product graphs are proved and for several classes exact values are obtained. It is proved that many metrically defined sets in Cartesian products hav...

متن کامل

The edge geodetic number and Cartesian product of graphs

For a nontrivial connected graph G = (V (G), E(G)), a set S ⊆ V (G) is called an edge geodetic set of G if every edge of G is contained in a geodesic joining some pair of vertices in S. The edge geodetic number g1(G) of G is the minimum order of its edge geodetic sets. Bounds for the edge geodetic number of Cartesian product graphs are proved and improved upper bounds are determined for a speci...

متن کامل

The reliability Wiener number of cartesian product graphs

Reliability Wiener number is a modification of the original Wiener number in which probabilities are assigned to edges yielding a natural model in which there are some (or all) bonds in the molecule that are not static. Various probabilities naturally allow modelling different types of chemical bonds because chemical bonds are of different types and it is well-known that under certain condition...

متن کامل

The geodetic number of strong product graphs

For two vertices u and v of a connected graph G, the set IG[u, v] consists of all those vertices lying on u − v geodesics in G. Given a set S of vertices of G, the union of all sets IG[u, v] for u, v ∈ S is denoted by IG[S]. A set S ⊆ V (G) is a geodetic set if IG[S] = V (G) and the minimum cardinality of a geodetic set is its geodetic number g(G) of G. Bounds for the geodetic number of strong ...

متن کامل

the geodetic domination number for the product of graphs

a subset $s$ of vertices in a graph $g$ is called a geodetic set if every vertex not in $s$ lies on a shortest path between two vertices from $s$‎. ‎a subset $d$ of vertices in $g$ is called dominating set if every vertex not in $d$ has at least one neighbor in $d$‎. ‎a geodetic dominating set $s$ is both a geodetic and a dominating set‎. ‎the geodetic (domination‎, ‎geodetic domination) number...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2008

ISSN: 0012-365X

DOI: 10.1016/j.disc.2007.10.007